Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8650, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622230

RESUMO

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de Mosquitos
2.
Mol Ecol ; 24(11): 2656-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25865270

RESUMO

Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine-serine substitution at codon 119 of the Ace-1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace-1 119S haplotype, whereas 119G diversity was high overall but very low at non-synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace-1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace-1 gene, whereas 119G alleles were unduplicated. Ace-1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace-1, emphasizing the need to integrate CNV analysis into genome scans for selection.


Assuntos
Acetilcolinesterase/genética , Anopheles/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Resistência a Inseticidas/genética , Alelos , Animais , Anopheles/enzimologia , Feminino , Genes de Insetos , Genótipo , Gana , Haplótipos , Desequilíbrio de Ligação , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência de DNA
3.
Nat Commun ; 5: 4248, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24963649

RESUMO

Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation.


Assuntos
Anopheles/genética , Ilhas Genômicas , Resistência a Inseticidas/genética , Isolamento Reprodutivo , Canais de Sódio Disparados por Voltagem/genética , Animais , Evolução Molecular , Mutação
4.
Malar J ; 12: 404, 2013 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-24206629

RESUMO

BACKGROUND: With high DDT resistance present throughout much of West Africa, carbamates and organophosphates are increasingly important alternatives to pyrethroids for indoor residual spraying (IRS). Though less widespread, resistance to both of these alternative insecticide classes has also been documented within the Anopheles gambiae species pair (formerly the M and S molecular forms) in West Africa. To manage insecticide efficacy, it is important to predict how and where resistance is likely to occur and spread, which could be aided by using molecular diagnostics with high predictive value. METHODS: Anopheles coluzzii and An. gambiae s.s. were collected from 18 sites throughout southern Ghana and bioassayed with bendiocarb, the most commonly applied carbamate, and an organophosphate, fenitrothion. The Ace-1 target site substitution G119S was genotyped by qPCR. RESULTS: Fenitrothion induced higher mortality than bendiocarb, though phenotypes correlated strongly across populations. Ace-1 119S was found at much higher frequency in An. gambiae s.s than An. coluzzii, exceeding 90% in a population from Greater Accra, the highest frequency reported to date. Ace-1 G119S was very strongly associated with resistance to both insecticides, providing high predictive power for diagnosis, though with some evidence for a differential effect between molecular forms for bendiocarb. Sequencing of the gene revealed a lack of variation in resistant alleles precluding determination of origin, but Ace-1 copy number variation was detected for the first time in Ghana. CONCLUSIONS: The results validate G119S as a useful diagnostic of organophosphate and carbamate resistance within and among populations, whilst highlighting the potential for an aggregate nature of Ace-1 genotypes, which may comprise both single-copy and duplicated genes. Further work is now required to determine the distribution and resistance-association of Ace-1 duplication.


Assuntos
Acetilcolinesterase/genética , Anopheles/genética , Carbamatos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mutação de Sentido Incorreto , Organofosfatos/farmacologia , Animais , Anopheles/efeitos dos fármacos , Bioensaio , Feminino , Marcadores Genéticos , Gana , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise de Sobrevida
5.
PLoS Genet ; 4(11): e1000286, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19043575

RESUMO

Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non-alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.


Assuntos
Anopheles/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Permetrina/metabolismo , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/metabolismo , Genótipo , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Permetrina/farmacologia
6.
Genetics ; 175(2): 751-61, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17110481

RESUMO

The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.


Assuntos
Anopheles/genética , Vetores de Doenças , Ecossistema , Variação Genética , Malária/parasitologia , Migração Animal , Animais , Teorema de Bayes , Intervalos de Confiança , Genótipo , Geografia , Gana , Amostragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...